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Carbometalation of alkynes is one of the most useful methods
for olefin synthesis, since the resulting alkenylmetals can be
transformed to various multisubstituted ethenes in a stereoselective
manner.1 Although heteroatom-containing alkynes undergo carbo-
metalation with diverse organometallic compounds in the presence
or absence of a transition metal catalyst,2 unfunctionalized alkynes
are poor substrates, in particular for the addition of arylmetals.3

Here we report that iron4-8 and copper9 complexes cooperatively
catalyze the arylmagnesiation of alkynes including dialkylacetylenes
that do not contain a heteroatom.3 This presents a rare example of
efficient cooperative catalysis.10 It is also remarkable that the metals
(Fe, Cu, and Mg) used in the present catalytic reaction are all
inexpensive.

The reaction of 3,5-dimethylphenylmagnesium bromide (1a) with
4-octyne (2a) in the presence of Fe(acac)3 (5 mol %), CuBr (10
mol %), and PBu3 (40 mol %) in THF at 60°C for 24 h followed
by hydrolysis gave 74% yield of 4-(3,5-dimethylphenyl)-4-octene
(3a), where the ratio ofE/Z isomers is 95/5 (entry 1 in Table 1).11-13

The E geometry indicates that arylmagnesiation took place with
syn-selectivity. The presence of both iron and copper catalysts is
essential for the high yield of arylmagnesiation. Thus, the reaction
without Fe(acac)3 did not give3a at all, with all the alkyne (2a)
remaining (entry 2), and the yield of3a was much lower (26%) in
the reaction without CuBr (entry 3). The cooperative catalysis by
the iron and copper is more obvious in the addition of 2-methyl-
1-naphthylmagnesium bromide (1b) to 2a (entries 4-6). The yield
of arylation product3b was 91% in the presence of both Fe(acac)3

and CuBr catalysts, whereas the yield was very low (0% or 2%) in
the absence of either iron or copper catalyst.

Table 2 illustrates the scope of the present arylmagnesiation of
alkynes catalyzed by the iron/copper cooperation. Various aryl-
magnesium bromides added to aliphatic and aromatic unfunction-
alized alkynes in stereoselectivities higher than 90% except for the
addition to 1-(trimethylsilyl)propyne (entry 11). Regioselectivities
over 95% were observed in the reaction of unsymmetrical aryl-
and silylacetylenes (entries 8-11).14 A terminal acetylene, though
in a low yield, participated in the reaction despite the intrinsic
reactivity of its acidic methyne proton toward basic1a (entry 10).

Addition of D2O to the reaction mixture resulting from addition
of 1b to 2a gave arylalkene3b that is deuterated at its olefinic
methyne, indicating that the arylmagnesiation forming alkenylmag-
nesium actually took place (Scheme 1). Synthetic utility of the
arylmagnesiation products was demonstrated by their further
transformation through one-pot reactions with an electrophile. Thus,
the reaction mixture of the arylmagnesiation of2a with 1b was
treated with benzaldehyde or benzyl bromide to give allylic alcohol
415 or tetrasubstituted ethene5, respectively.

Reactions examined with a stoichiometric amount of Fe(acac)3

or CuBr gave us significant insight into the reaction mechanism.
Thus, an aryliron species,16 generated from Fe(acac)3, PBu3, and
an excess amount (4.0 equiv to Fe) of Grignard reagent1b in THF,

was treated with 4-octyne (2a) (1.0 equiv to Fe) at 60°C for 20
min. Hydrolysis of the reaction mixture gave hydroarylation product
3b in 85% yield (Scheme 2). It follows that the addition of an
aryliron to the alkyne forming an alkenyliron took place with high
selectivity. Considering that the reaction of1b with 2a in the
presence of a catalytic amount (5 mol %) of iron gave only a low
yield (2%) of 3b (entry 6 in Table 1), the alkenyliron species
generated by the arylironation of the alkyne is not reactive toward
further transformations such as transmetalation or polymerization,
keeping its alkenyliron structure under the reaction conditions

Table 1. Arylmagnesiation of 4-Octyne Followed by Hydrolysisa

amount (mol %)

entry Ar Fe(acac)3 CuBr
conv
(%)b

yield
(%)c E:Zd

1 3,5-Me2C6H3 (1a) 5 10 >99 74 95:5
2 0 10 <1 0 -
3 5 0 57 26 87:13
4 2-Me-1-Nap (1b) 5 10 >99 91 98:2
5 0 10 <1 0 -
6 5 0 14 2d >99:1

a The reaction was carried out in THF (1.7 mL) at 60°C for 24 h under
a nitrogen atmosphere using an arylmagnesium bromide (0.90 mmol),
4-octyne (0.45 mmol) and PBu3 (0.18 mmol) in the presence of Fe(acac)3
(22 µmol) and/or CuBr (45µmol). b Determined by GC.c Isolated yield
based on the alkyne.d Determined by GC, GC-MS and1H NMR.

Table 2. Hydroarylation of Alkynes Catalyzed by Iron-Coppera

entry Ar R1 R2 time (h) yield (%)b E:Zc

1 Ph Pr Pr 24 62 97:3
2 4-MeC6H4 Pr Pr 43 66 97:3
3 3-MeC6H4 Pr Pr 24 70 95:5
4 2-MeC6H4 Pr Pr 48 61 93:7
5 3-MeOC6H4 Pr Pr 24 56 97:3
6 4-FC6H4 Pr Pr 24 40 95:5
7 3,5-Me2C6H3 Bu Bu 24 67 96:4
8 3,5-Me2C6H3 Hex Ph 24 76 94:5(:1)
9 2-Me-1-Nap Me Ph 24 90 99:1

10 3,5-Me2C6H3 H Ph 24 36 91:5(:4)
11 3,5-Me2C6H3 Me SiMe3 24 56 72:26(:2)

a The reaction was carried out in THF (1.7 mL) at 60°C under a nitrogen
atmosphere using an arylmagnesium bromide (0.90 mmol) and an alkyne
(0.45 mmol) in the presence of Fe(acac)3 (22 µmol), CuBr (45µmol) and
PBu3 (0.18 mmol).b Isolated yield based on the alkyne.c Determined by
GC, GC-MS and1H NMR. The values in parentheses shows the ratio of
a regioisomer to (E)- and (Z)-3.
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lacking the copper catalyst. On the other hand, alkyne2a did not
undergo any reactions with the diarylcuprate17 derived from CuBr
and Grignard reagent1b (4.0 equiv to Cu), indicating that the copper
does not participate in the step of arylmetalation of the alkyne
forming an alkenylmetal species. It is most likely that the main
role of the copper catalyst is to promote the metal exchange between
the alkenyliron and the aryl Grignard reagent. The catalytic cycle
consistent with the experimental results is shown in Scheme 3.
Addition of aryliron6 to alkyne2 forms alkenyliron7. The alkenyl
group on iron transfers to copper by the transmetalation18 with
diarylcuprate8 to give alkenyl(aryl)cuprate9 and to regenerate
aryliron 6. Alkenylmagnesium bromide10 is released as the
arylmagnesiation product by the transmetalation between alkenyl-
cuprate9 and aryl Grignard reagent119 to complete the catalytic
cycle.

In conclusion, we have disclosed the arylmagnesiation of alkynes
effectively catalyzed by a catalyst system consisting of iron and
copper. The most striking feature is that the cooperative catalysis
enables us to conduct otherwise hardly attainable arylmagnesiation
of dialkylacetylenes.
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